DRAFT - CPS POSITION STATEMENT

Adrenal Suppression from Glucocorticoids: Prevention, screening and management

Principal Authors: Alexandra Ahmet, Anne Rowan-Legg, Larry Pancer

Co-Authors: Celine Huot, Ellen Goldbloom, Harold Kim, Tom Kovesi, Preetha Krishnamoorthy, Roman Jurencak, Arati Mokashi

Introduction

Glucocorticoids (GCs), including inhaled corticosteroids (ICS), are essential for the treatment of many pediatric disorders and have led to significant improvements in disease outcomes. Hypothalamic Pituitary Adrenal (HPA) axis suppression or adrenal suppression (AS), is a potential side effect of GC therapy and can be associated with significant morbidity and even death. ¹⁻³

Symptoms of AS are often non-specific (Table 1) and can go undetected until a physiologic stress (illness, surgery, injury) precipitates an adrenal crisis ⁴. Adrenal crisis has also been reported in the absence of physiologic stress, likely secondary to unrecognized symptoms of AS. ^{2,4} Symptomatic AS including adrenal crisis can be prevented by recognizing children at risk and administering physiological GCs, and/or higher doses of GCs during times of stress. ^{3,4} Despite being a treatable condition, failure of adequate preventive measures or delayed treatment has led to unnecessary morbidity and death in individuals with adrenal insufficiency (AI). Recognition of the risks for the development of adrenal crisis and patient education are key elements to its prevention.

A recent CPSP study, looking at the national incidence of symptomatic AS in children, reported 46 cases including 6 (13%) cases of adrenal crisis over 2 years with over 50% in children using ICS.⁵ Asymptomatic biochemical evidence of AS is considerably more frequent. ⁶⁻⁹ AS is the most common form of AI in children. ⁴

There are few known risk factors for the development of symptomatic AS. Therefore, the burden of screening for and managing asymptomatic biochemical AS needs to be balanced with the risk of severe morbidity and mortality in a subset of patients. The lack of evidence for a uniform approach to screening and treatment of AS is a challenge for pediatricians and endocrinologists. We therefore formed a working group composed of community pediatricians, pediatric endocrinologists from across Canada and pediatric subspecialists to develop a joint CPS / Canadian Pediatric Endocrine Group (CPEG) statement.

This position statement gives an overview of the available evidence and provides recommendations for the practicing pediatrician that aim to provide a safe, practical approach to screening and management of patients at risk. Our working group acknowledges that the approach to adrenal suppression differs, even amongst members of the Canadian Pediatric Endocrine Group and there may be alternative reasonable approaches to this clinical problem.

Adrenal suppression in children treated with systemic glucocorticoids

Both clinical and biochemical evidence of AS has been well described in children following discontinuation of therapeutic doses of systemic GC. ^{7,9-12} Shorter term systemic GC exposure is associated with transient AS, ^{13,14} in practice, exposure for >2 weeks is used as a threshold for risk of clinically important AS. ⁴ Duration of AS following prolonged GC exposure has been reported to be up to 1-2 years. ^{6,9} Symptomatic AS including adrenal crisis and death are well documented related to systemic GC therapy. ^{3,5,11,15} Higher dose, longer duration and timing of administration of GCs (evening >morning) are theoretical risks. ^{16,17} To our knowledge, there is no literature exploring cumulative risk of repeated intermittent systemic GC exposure.

Glucocorticoid Taper

There is no evidence to support a specific approach to GC taper for the prevention of AS. ^{3,18} It has been demonstrated that a gradual GC taper does not prevent AS. ⁹ GCs should be tapered or discontinued at a rate dictated by the underlying condition in order to maintain disease remission; if not indicated for prevention of disease relapse, a prolonged taper should be avoided to prevent unnecessary GC exposure. Physiological GC replacement should prevent symptoms of AS, ⁴ so testing of the HPA axis prior to discontinuing or tapering GCs below this threshold should be done in children who have received prolonged courses of GCs (Algorithm 3). Symptoms of GC withdrawal can occur during a rapid taper and may mimic symptoms of AS. ¹⁹ Clinicians need to be aware of this possibility, evaluate for possible AS, and modify their taper accordingly.

Adrenal suppression in children treated for asthma with inhaled corticosteroids

Inhaled corticosteroid (ICS) therapy is first-line asthma treatment in children, with well-proven efficacy. ICS therapy, when used according to current guidelines, ²⁰ is rarely associated with clinically significant AS. The Canadian Thoracic Society Guidelines recommend high doses of ICS only be used by asthma specialists. ²⁰

There have been greater than 90 case reports in the literature of adrenal crisis or death secondary to ICS use for the treatment of asthma. ^{1,21-23} The majority of cases have been reported in children receiving 500 mcg or greater of fluticasone daily, although there have been reports with lower doses and other forms of ICS. ^{1,2,5,10,22,24,25}

Pharmacokinetic and pharmacodynamic properties and dose, in addition to ICS mode of delivery, play a role in the risk of AS² (Table 2: Comparative ICS dosing ²⁰ and recommended screening thresholds for AS). Important risk factors for the development of AS in children with asthma include frequent or prolonged courses of systemic GCs and use of high dose ICS either alone or in combination. ^{1,2,10,26,27} Achieving good asthma control with skilled use of controller therapy, including appropriately dosed ICS, will prevent exacerbations and reduce the need for long-term and/or repeated course of GCs. ²⁸ Other possible risk factors for AS in children treated for asthma include concomitant intranasal corticosteroids, low BMI and cumulative ICS. ² Duration of ICS exposure has not been found to be a risk factor, however the majority of studies have looked at exposures of 6 weeks or more. ^{8,29}

Evidence of AS has been demonstrated with all forms of ICS (with the exception of ciclesonide) with greater risk associated with higher doses. ^{23,26,30,31} Ciclesonide is a relatively new ICS that appears to have reduced AS risk ^{23,26,2}. Recommended screening thresholds are generally equivalent to high dose therapy according to the Canadian Asthma Guidelines. Clinicians need to be aware of the ICS doses contained in combination inhalers and should screen based on the ICS component, according to the recommendations contained in Table 2.

Adrenal suppression in children treated with other forms of glucocorticoids

Studies of the risk of AS related to intranasal corticosteroids alone have had variable results. ^{32,33} The use of intranasal corticosteroids in conjunction with ICS has been shown to be a risk factor for AS. ³⁴

There have been case reports of symptomatic AS and cushingoid features in infants receiving potent topical GCs for >1 month duration with misuse of the medication. ³⁵ Symptomatic AS associated with cushingoid features has also been reported with ocular GCs. ³⁶ AS has been associated with intraarticular GCs in adults. ^{37,38}

AS has been clearly demonstrated in children receiving swallowed ICS for eosinophilic esophagitis. 5,39 Recent studies suggest children with inflammatory bowel disease treated with swallowed ICS may also be at risk for AS. 40

Medications Potentiating Systemic Effects of Glucocorticoids

CYP3A4 inhibitors, including several HIV drugs, antifungal agents and select antidepressants, prolong the biologic half-life of GCs. These drugs have been reported a) in several cases of symptomatic AS associated with relatively low doses of ICS and b) to prolong duration of AS in systemic GC exposure. 7,10,41-43

Testing for adrenal suppression

First morning cortisol (7-9 am) is often used in screening for AI. A first morning cortisol is specific for diagnosis of AI if \leq 100 nmol/L in individuals with a normal sleep-wake cycle in whom GCs are withheld for at least 24 hours. Because cortisol production is under circadian regulation, a low morning cortisol is poorly predictive of AS in infants and children who do not have a regular sleep-wake cycle, and dynamic testing is indicated. A first morning cortisol value of \geq 350 - 500 nmol/L, can predict normal HPA axis function. From a practical perspective a first morning cortisol value of 275nmol/L has been used as a screening threshold in asymptomatic patients.

Our working group recommends the low-dose ACTH stimulation test (LDST), 1 microgram, as the best available provocative test for the evaluation of AS in children but acknowledges that the standard dose (250 microgram) ACTH stimulation test is a reasonable alternative. A peak cortisol threshold of >500 nmol/L is commonly used to rule out AI but peak cortisol values vary between studies and institutions and this threshold has not been correlated with clinical symptoms or risk of adrenal crisis. We recognize that stimulation testing may not always be easily accessible.

While standard cortisol thresholds for diagnosis of AI are used throughout this statement, a lack of assay standardization and other factors contributing to measurement variability should raise caution for interpretation of "borderline" cortisol values. ⁴⁶ Thresholds quoted in this statement are based on the best available literature and expert opinion and may not apply to all assays.

See Table 3: Tests of HPA axis function, for testing procedures.

Glucocorticoid replacement

Children with symptomatic AS require daily physiologic GC replacement (Table 4). Daily GC replacement is also an important consideration in high risk children with abnormal first morning cortisol even in the absence of clear symptoms but remains controversial among pediatric endocrinologists. Our working group advocates for the use of daily GC replacement because: a) reports of adrenal crisis are not always associated with intercurrent illness, ⁵ therefore stress dosing alone will not necessarily prevent morbidity, b) symptoms of AI are non-specific and may be missed by physicians or families, and c) there are cases of adrenal crisis in children who are actively receiving high dose ICS therapy indicating that systemic absorption is not always sufficient⁵

Evaluation of possible AS and administration of daily GC replacement in children receiving systemic GC therapy, is only indicated once therapeutic doses of GCs have been discontinued or tapered to less than a physiological dose (< 8 mg/m²/day hydrocortisone equivalent). Hydrocortisone, with its short half-life, is the drug of choice because it allows for finer titration and is best able to mimic physiologic cortisol secretion. While TID hydrocortisone dosing is standard of care in primary AI, ⁴⁹ many endocrinologists provide BID dosing in AS, with higher doses in the morning to more closely mimic circadian regulation and to reduce the suppression of endogenous morning cortisol production. Some clinicians choose to provide hydrocortisone as once daily dosing first thing in the morning, when first morning cortisol is above 100 nmol/L. Clinicians must be aware of the short half-life of hydrocortisone and consider TID dosing if a child remains symptomatic. ^{4,50,51} There are no studies comparing hydrocortisone dosing regimens in AS.

Cortisol production is significantly higher during physiological stress in healthy individuals. ⁵² Children with proven or suspected AS should receive stress doses of GCs during stress (surgery, illness, injury), to prevent the risk of adrenal crisis (table 4). ^{11,15,53,54} There is currently insufficient data to recommend GC coverage during moderate-to-extreme activity or emotional stress. ^{4,55,56}

While receiving active systemic GC therapy, stress dosing for mild to moderate illness can be provided using the therapeutic GCs rather than hydrocortisone (see Table 5 for relative potencies). Stress dosing for severe illness however needs to be given parenterally using hydrocortisone, even while on active therapy (Table 4, Table 5). Once therapeutic GC is no longer needed for the underlying condition, stress dosing should be provided as hydrocortisone.

Strong CYP3A4 Inducers, such as phenobarbital, carbamazepine or rifampicin, may decrease the serum concentration of GCs requiring an awareness of the need for dose adjustment in the context of ongoing symptoms or poor response to stress dosing in the management of AS. ^{57,58}

Recommendations

General considerations

- Symptomatic AS including adrenal crisis while rare, is a serious potential adverse effect of both systemic and inhaled GC therapy
- Despite the potential side effect of AS, ICS therapy when used according to current guidelines and short courses of systemic GC therapy are rarely associated with clinically significant AS
- There is currently poor evidence for a uniform screening and management approach. These recommendations are based on the best available evidence and expert opinion. Our working group acknowledges that there may be other reasonable approaches to management

How should we reduce the risk of AS?

- For the large majority of patients, clinician awareness of the potential of AS, reduction of AS risk
 and recognition of possible symptoms are the best preventative measures. However, closer
 attention to those at increased risk is required
- Clinicians should use the lowest effective dose of GC with regular re-evaluation
- Once-daily GC dosing should be administered in the morning when possible to minimize suppression of the HPA axis
- In most cases, GC taper can be guided by the underlying condition. Clinicians need to be aware of symptoms of possible AS or GC withdrawal and modify the taper accordingly (Algorithm 3)

How should we prevent morbidity related to AS?

- Clinicians should be aware of the signs and symptoms of possible AS (Table 1), including poor growth
- Families should be educated about the risk of AS with an understanding that the benefits of GC therapy outweigh the risks, and that medication adherence and clinical follow-up are the best preventative measures for symptomatic AS. See CPS patient handout [AA1](
- Families of children with proven or possible AS should be educated about stress dosing (Table 4) and provided with a stress dosing card (Appendix 2) or handout outlining doses, indications for

- stress dosing and indications to seek emergency help. Consideration of a medical alert bracelet should be made
- Stress dosing should be provided for critical illness for all children being actively treated with
 GCs and should be considered in all children who have had discontinuation of GC therapy during
 the previous year unless they have been proven to have a normal HPA axis. Cortisol should be
 drawn prior to initiating stress dosing during a critical illness if the diagnosis of AS is not
 confirmed
- During critical illness or injury, rapid administration of parenteral hydrocortisone is essential. In some provinces, paramedics will be able to administer the patient's own supply of intramuscular (IM) hydrocortisone. We strongly support the initiative to standardize EMS protocols across Canada with respect to administration of emergent GC therapy in individuals with AI including AS

Who should be screened/tested for AS?

- All children with current or recent history of GC/ICS use presenting with symptoms of adrenal crisis (hypoglycemia/altered mental status or severe hypotension) should be urgently evaluated and treated for possible AS
- All children with possible signs or symptoms of AS and with current or recent history of GC/ICS use (Table 1)
- We recommend routine screening in all children with the following risk factors:
 - Supra-physiological doses of systemic GCs for > 2 weeks (consecutive)
 - o Threshold doses of ICS for \ge 3 months (Table 2)
 - Swallowed ICS therapy (e.g. eosinophilic esophagitis, inflammatory bowel disease, graft vs host disease) for >1 month. Follow algorithm 3
 - Unexplained poor linear growth over a 6 month period AND treatment with any form of GCs over the past year or current treatment with non-systemic GCs
 - Treatment with non-systemic GCs who present with symptoms/signs of Cushing's syndrome
 - Intermittent supra-physiological doses of systemic GCs for ≥3 cumulative weeks in 3 months. Follow algorithm 2 if 3-4 weeks cumulative exposure, algorithm 3 if >4 weeks cumulative exposure
 - o ICS of any dose in conjunction with CYP3A4 inhibitors for >3 months

How should we screen/test for adrenal suppression (see algorithm 1-3)?

- When receiving a treatment course of systemic GCs, evaluation of the HPA axis should only be performed once GC is no longer supraphysiologic (Algorithm 2-3)
 - A first morning cortisol can be used as a screening tool for the detection of AS in patients at risk, although first morning cortisol thresholds for diagnosis are poorly defined
 - A first morning cortisol of >275 nmol/L has been used empirically to identify a low risk of clinically significant AS
 - The LDST should be used to definitely rule in or out AS
 - The standard dose ACTH stimulation test is a reasonable alternative to the LDST in the evaluation of children with possible AS
 - Glucocorticoids, including ICS should be held for 24 hours prior to any test of the HPA axis.
 If not possible, results should be interpreted with caution
- See Algorithm 1-4 for screening and management of children at greatest risk (as listed in the section "who should be screened/tested for AS")

How should we manage children with possible or proven AS?

- Children with proven symptomatic AS should receive both daily physiological and stress dosing GCs
- Children with possible or proven asymptomatic AS should receive stress dosing and education about this
- While there is a lack of consensus amongst pediatric endocrinologists about the use of daily GC therapy in *asymptomatic* AS, our working group advocates for daily GC administration based on risk and morning cortisol threshold (Algorithm 1-3)
- Physiological GC therapy, when indicated, should be provided preferentially as hydrocortisone
 at a dose of 8 mg/m²/day. BID dosing with a higher dose in the morning is indicated for most
 children however possible indications for once daily and TID dosing are outlined in table 4
- Teaching of IM hydrocortisone therapy for use during severe illness or when unable to tolerate oral therapy, should be considered for all children with possible or proven AS, especially in those who live or travel remotely

Conclusions

While biochemical AS is relatively common in children treated with GC therapy, symptomatic AS is less frequently seen. Symptomatic AS can be prevented by responsible GC prescribing and follow-up, education about risks, recognition of signs and symptoms including poor growth, and screening and treatment of children at greatest risk. Uncertainty about management and in specific clinical contexts warrants consultation with endocrinology (Appendix 1). Clinicians and families should not lose sight of the fact that GCs are essential for the management of many pediatric conditions and that the risk of AS should not be a barrier to their use.

Appendix 1 – Tables and Figures (Online only)

Table 1 - Presenting symptoms and signs associated with AS

Symptoms/Signs of Possible Adrenal Suppression

Poor linear growth*

Poor weight gain

Anorexia

Nausea/vomiting

Malaise

Weakness/fatigue

Headache

Abdominal pain

Myalgia/arthralgia

Psychiatric symptoms

Signs of Adrenal Crisis

Hypotension

Hypoglycemia (seizure/coma)

Signs Associated with AS

Cushingoid features

^{*}Poor linear growth has been reported in close to 50% of patients with symptomatic AS (Goldbloom et al. 2016). ⁵Table adapted from Ahmet et al 2011. ¹⁰

Table 2 –Comparative inhaled corticosteroids (ICS) dosing categories defined by the 2012 Canadian Asthma Guidelines and recommended screening thresholds for Adrenal Suppression

Corticosteroid	Trade Name	Daily ICS dose, mcg							
		Pediatric (6 to 11 years of age)			Adult (12 years of age and over)				
		Low	Moderate	High	Screening threshold ¹	Low	Moderate	High	Screening threshold ¹
Beclomethasone dipropionate HFA ⁵⁹	QVAR	≤200	201-400	>400	≥400	≤250	251-500	>500	≥400
Budesonide ⁵⁹ Budesonide and formoterol	Pulmicort Turbuhaler Symbicort	≤400	401-800	>800	≥800	≤400	401-800	>800	≥800
Ciclesonide	Alvesco	≤200	201-400	>400	>400	≤200	201-400	>400	>400
Fluticasone propionate ^{1,5,8}	Flovent MDI and spacer; Flovent Diskus; Advair	≤200	201-400	>400	>400	≤250	251-500	>500	≥500
salmeterol									
Fluticasone furoate ⁶⁰	Arnuity Ellipta* ⁶⁰ Breo Ellipta*				≥100mcg				≥100mcg
Mometasone 61,62 Mometasone formoterol	Asmanex Twisthaler Zenhale				>400mcg	200	≥400- 800	>800	≥800

^{*}Arnuity Ellipta and Breo Ellipta (fluticasone furorate) contain a new potent ICS. 100mcg daily is equivalent to 250mcg BID of fluticasone. This formulation has a high potential risk for AS. ⁶⁰

Table 3: Tests of HPA Axis Function

Procedure	Considerations for testing	Cortisol Results ^a
All Tests	 Hold all oral GCs for 24 hours prior to the test Hold ICS the evening and morning prior to the test if patient stable b 	
First morning cortisol ^c	 7-9 am test (Before 8 am is optimal) Tests drawn after 9 am must be repeated if abnormal 	 < 100 nmol/L = AS likely b,c,e; 2,44,45 100-275 nmol/L = possible AS^{c; 3} >275 nmol/L = clinically significant AS unlikely² >500 nmol/L ⁴⁵ = no AS^a
Low dose ACTH stimulation ^h	 Perform test in the morning⁶³ 1 mcg corticotropin analog ^{f;5} Minimal tubing length for administration of corticotropin reduces the possibility of adherence to plastic tubing⁶³ Cortisol drawn at 0, 15, 30 and 60 minutes for peak levels^{i; 64} 	 <500 nmol/L = AS^g ≥500 nmol/L ^{45,47} = no AS^a

^aCortisol reference ranges differ between assays ⁶⁵. The thresholds quoted may not apply to all immunoassay platforms. Consult your local endocrinologist if there is uncertainty about the use of these thresholds.

^bIn children where it is unsafe to hold evening ICS dose, abnormal cortisol levels must be interpreted with caution. ^c In infants and children with disrupted sleep-wake cycles, an abnormal first morning cortisol is not diagnostic of AS. Provocative testing is indicated. Referral to endocrinology should be considered for children <2 years of age or those with disrupted sleep-wake cycles.

^dProvocative testing is required to definitively rule in or out AS.

^eIn children with higher pre-test probability of AS (longer duration of GCs), we use a threshold of <150nmol/L to define likely AS (algorithm 2-3)

^fCareful dilution and timely administration of cortrosyn is required ⁶³

^gWhile a cortisol threshold of <500 nmol/L is often used to define adrenal insufficiency, borderline results (440-500nmol/L) should be considered with caution as this threshold is not 100% specific⁴⁷.

^hStandard dose ACTH stimulation tests (250 micrograms) are used in some institutions and are a reasonable alternative to the Low dose ACTH stimulation test.

Protocols for Low Dose ACTH stimulation tests including timing of cortisol may vary between institutions.

Table 4 : Glucocorticoid replacement and Stress Dosing

Indication	Glucocorticoid dose ^{1, 4}	
Adrenal crisis, severe illness or	Hydrocortisone 100 mg/m² (max 100 mg) IV/IM stat,	
injury	then 100 mg/m ² (max 200 mg) divided q 6 hours or by continuous infusion	
Surgery	Hydrocortisone 50-100 mg/m ² IV (max 100 mg) pre-op,	
	then 100 mg/m²/24 hrs IV (max 100 mg) by continuous infusion or divided q 6 hrs	
Moderate Illness including	30 mg/m ² /day hydrocortisone equivalent ² divided TID until resolution of	
Fever ≥38.5°, vomiting,	symptoms. Duration >3 days should be reassessed by the health care team ³ .	
diarrhea, lethargy, severe		
head cold or injury		
Able to tolerate orally		
Vomiting or moderate illness	Must be given parenterally	
and unable to tolerate orally	25 mg/m²/dose hydrocortisone q 6 hourly IV or q 8 hourly IM	
	Consult endocrinology to re-assess parenteral dose if the child is still unable to	
	tolerate orally after 24 hours of parenteral administration	
Severe illness or moderate	Consider teaching administration of IM hydrocortisone in all patients with AS	
illness and unable to tolerate	Families who do not have rapid access to a hospital ER or who are planning	
orally BEFORE arriving in ER	remote travel (airplane, camping, etc.) should be taught administration of IM	
	hydrocortisone	
Daily Physiologic Dosing		
Children with	8 mg/m²/day hydrocortisone divided BID (higher dose in morning). ⁵ Treatment	
symptomatic AS	should continue until normalization of the first morning cortisol (or evidence of a	
• Consider ⁶ in children with	normal low dose ACTH stimulation test)	
first morning cortisol <150		
nmol/L post	Consider TID dosing if symptomatic or less than 2 years of age	
discontinuation of GCs	Consider once daily dosing if asymptomatic and cortisol >100 nmol/L	
• Consider ⁶ in children with		
first morning cortisol <100		
nmol/L while on active		

high dose ICS therapy		

¹Poor evidence for pediatric dosing. Recommendations based on expert opinion and best available evidence. ^{4,49-51}

Table 5: Relative glucocorticoid potencies^a

	Anti-Inflammatory Potency	HPA Suppression Potency ^b	Duration of action (hours)
Hydrocortisone (cortisol)	1	1	8 to 12
Prednisone	4	4	12 to 36
Prednisolone	4	4	12 to 36
Methylprednisolone	5	5	12 to 36
Dexamethasone	30	50 (17-100)	36 to 72

^aHPA suppression potencies should be used when calculating hydrocortisone equivalent doses for evaluation of AS risk ^bAvailable data about relative HPA suppression potency is limited and widely variable. Studies of growth suppressive effects of prednisone, prednisolone, methylprednisolone and dexamethasone suggest that secondary effects on growth relative to anti-inflammatory effects may be significantly higher. References ⁶⁶⁻⁶⁸

²In children on active therapy in doses ≥30 mg/m²/day hydrocortisone equivalent (≥7.5mg/m²/day prednisone), stress dosing for mild-moderate illness can be acheived by dividing the therapeutic prednisone dose to be given BID (i.e. therapeutic dose is sufficient for stress coverage). Once therapeutic GC is no longer needed, stress dosing should be provided using hydrocortisone.

³Frequent or prolonged duration of stress dosing can contribute to adrenal suppression. Stress dosing is not required for very mild symptoms such as a persistent runny nose. In children with "possible AS" requiring frequent stress dosing, provocative testing to confirm the diagnosis, or referral to an endocrinologist is indicated.

⁴Dosing may need to be adjusted in children receiving CYP3A4 Inducers. Endocrinology should be consulted in these cases.

⁵An alternative dosing regimen would be provision of BID dosing until first morning cortisol is >100nmol/L and then once daily morning dosing until normalization of the HPA axis in asymptomatic children.

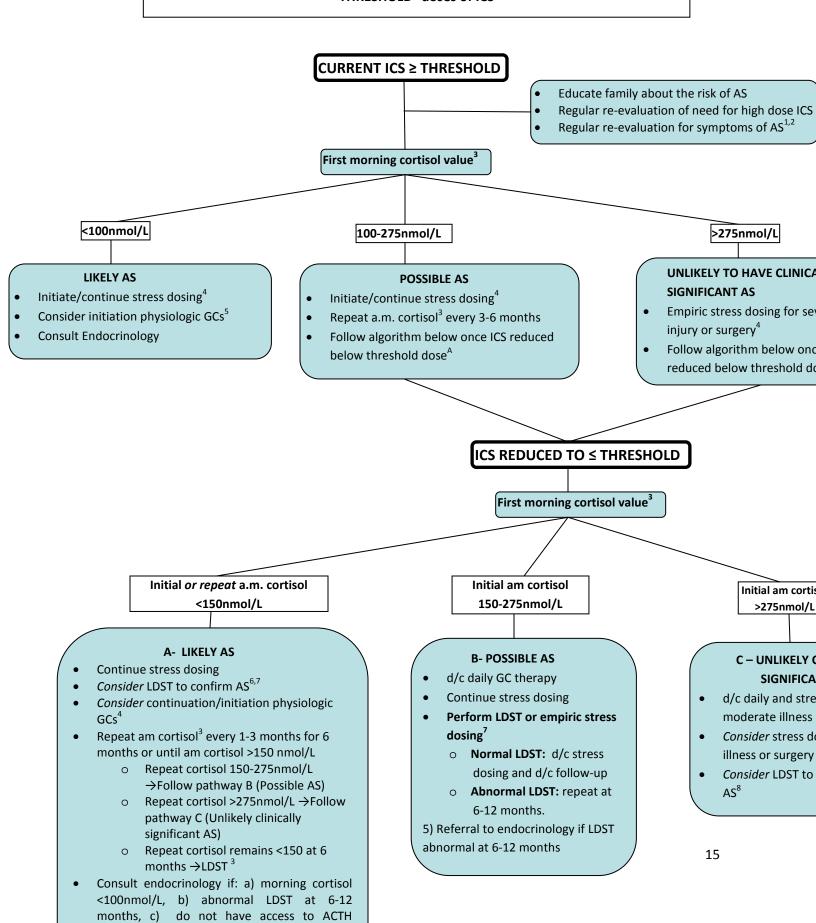
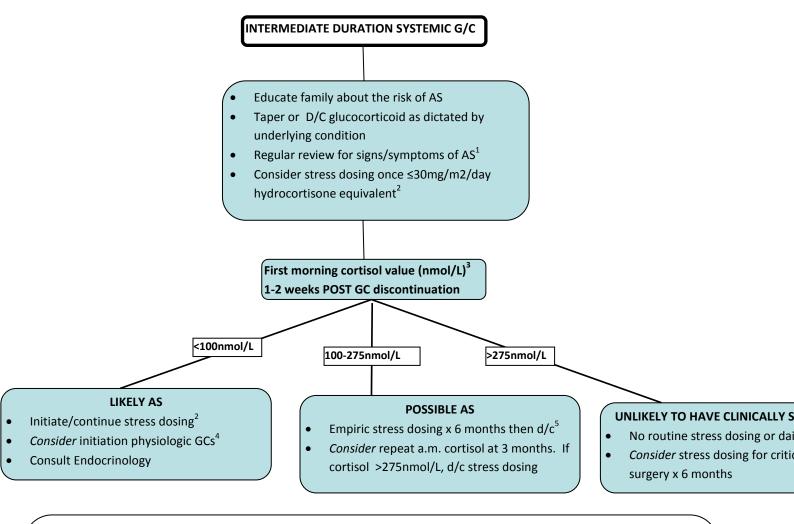

⁶While the authors of the statement advocate for the use of daily physiological GC therapy in children with asymptomatic AS and abnormal first morning cortisol to prevent the risk of adrenal crisis, there is no clear evidence to support this. See algorithm 1- 3 which include possible alternative approaches.

Table 6 – Indications to consider Endocrinology consultation

Table 6 –Indications to consider Endocrinology consultation

- Signs or symptoms of AS
- Symptoms of glucocorticoid withdrawal
- First morning cortisol <100 nmol/L
- Abnormal LDST 6-12 months post GC discontinuation
- If LDST indicated and unable to perform without endocrine consult
- Cases where IM teaching is required (i.e. patient has poor access to emergency department or plans remote travel)
- Uncertainty about whether the recommended cortisol thresholds are appropriate for your local laboratory or difficulty interpreting cortisol results (i.e. borderline values)
- Proven or possible AS and receiving CYP3A4 inducers
- Children with "possible AS" who are requiring frequent stress dosing
- Children < 2 years of age with likely, possible or confirmed AS
- Questions or concerns about screening or testing result and the appropriate next steps for management

Algorithm 1: Screening and management of *asymptomatic* children receiving THRESHOLD^A doses of ICS



stimulation testing⁷

Algorithm 1 – footnotes, management options and controversies

- A See Table 2 Threshold doses ICS
- ¹See Table 1 Symptoms/Signs of possible AS
- ² Follow Algorithm 4 if symptomatic
- ³ See table 3 for testing procedures
- ⁴ See table 4 for glucocorticoid dosing, see Appendix 2 for stress dosing card
- While the authors of the statement advocate for the use of daily physiological GC therapy in children with asymptomatic AS and abnormal first morning cortisol to prevent the risk of adrenal crisis, there is no clear evidence to support this. Some endocrinologists do not treat with physiological GC in asymptomatic children.
- Consideration of a LDST should be made prior to ongoing daily GC therapy, especially in children at lower risk of AS (i.e. shorter duration of GC therapy) or children with abnormal sleep wake cycles (i.e. children <2 years of age), secondary to the poor specificity of a first morning cortisol.
- The function of the following stress dosing is a specific stress of the following is a specific stress of the specific stress of the following is a specific stress of the specific stress of the following is a specific stress of the s
- ⁸A screening threshold of >275nmol/L is often used in clinical practice to rule out AS while an am cortisol >350-500nmol/L is needed to definitively rule out AS. Therefore in children at greater risk, empiric GC therapy for 1 year or a LDST to definitively rule out AS might be considered.

Algorithm 2: Screening and management of *asymptomatic* children POST DISCONTINUATION of intermediate duration (2-4 weeks) systemic GC therapy

Algorithm 2 - management options and controversies

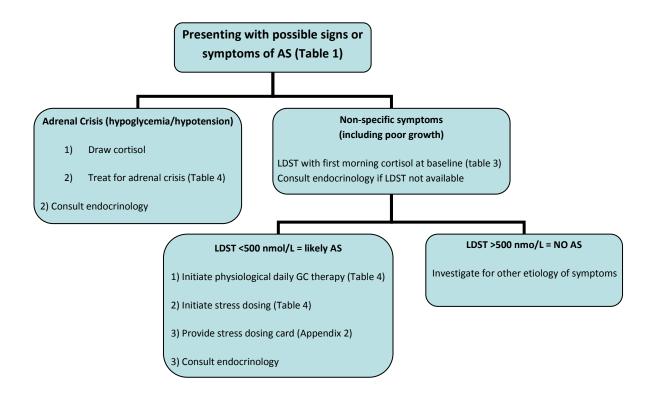
- ¹Follow algorithm 3 if symptomatic
- ²See table 4 for stress dosing, Appendix 2 for stress dosing cards
- ³ See table 3 for testing procedures
- While the authors of the statement advocate for the use of daily physiological GC therapy in children with asymptomatic AS and abnormal first morning cortisol to prevent the risk of adrenal crisis, there is no clear evidence to support this. See table 4 for physiological dosing.
- 5If frequent stress dosing required or anticipated, perform LDST and refer to endocrinology if abnormal.

Algorithm 3: Screening and management of asymptomatic children AFTER DISCONTINUATION of long duration (>4 weeks) systemic GC therapy

>4 WEEKS SYSTEMIC GC THERAPY Empiric stress dosing for illness, injury or surgery until evaluation of the HPA axis¹ Educate family about the risk of AS Regular review for signs/symptoms of AS post taper or discontinuation of GC^{2,3} Gradual taper dictated by the underlying condition Systemic GC and no taper indicated for First morning cortisol⁴ 1-2 weeks after reducing GCs to management of the underlying condition physiologic dose⁵ Rapid GC taper to physiologic dose⁵ and perform first morning cortisol⁴ 1-2 weeks later First morning cortisol value Initial am cortisol Initial or repeat a.m. Initial am cortisol cortisol 150-275nmol/L >275nmol/L **A-LIKELY AS B - POSSIBLE AS** Continue stress dosing

- Consider LDST to confirm AS4
- Consider continuation/initiation physiologic GCs^{1,6}
- Repeat am cortisol⁴ every 1-3 months for 6 months or until am cortisol >150 nmol/L
 - Repeat cortisol 150-275nmol/L →Follow pathway B (Possible
 - o Repeat cortisol >275nmol/L →Follow pathway C (Unlikely clinically significant AS)
 - Repeat cortisol remains <150 at 6 months →LDST ⁷
- Consult endocrinology if: a) morning cortisol <100nmol/L, b) abnormal LDST at 6-12 months, c) do not have access to ACTH stimulation testing⁸

- d/c daily GC therapy
- Continue stress dosing
- **Perform LDST or empiric stress** dosing⁸
 - Normal LDST: d/c stress dosing and d/c follow-up
 - o Abnormal LDST: repeat at 6-12 months.
- 5) Referral to endocrinology if LDST abnormal at 6-12 months


C – UNLIKELY CLINICALLY SIGNIFICANT AS

- d/c daily and stress dosing for moderate illness
- Consider stress dosing for critical illness or surgery for 1 year 9
- Consider LDST to definitively r/o AS9

Algorithm 3 – footnotes, management options and controversies

- ¹See table 4 for glucocorticoid therapy including stress dosing, see Appendix 2 for stress dosing cards
- ²See Table 1 Symptoms/Signs of possible AS
- Follow Algorithm 4 if symptomatic
- ⁴ See table 3 for testing procedures
- ⁵ Physiological hydrocortisone dose = 8mg/m2/day. See table 5 for glucocorticoid equivalencies.
- While the authors of the statement advocate for the use of daily physiological GC therapy in children with asymptomatic AS and abnormal first morning cortisol to prevent the risk of adrenal crisis, there is no clear evidence to support this. Some endocrinologists do not treat with physiological GC in asymptomatic children.
- ⁷Consideration of a LDST should be made prior to ongoing daily GC therapy, especially in children at lower risk of AS (i.e. shorter duration of GC therapy) or children with abnormal sleep wake cycles (i.e. children <2 years of age), secondary to the poor specificity of a first morning cortisol.
- ⁸If uncertain about availability of LDST, consult your local endocrinologist. In some cases, empiric stress dosing x 1 year may be a reasonable alternative to dynamic testing.
- 9A screening threshold of >275nmol/L is often used in clinical practice to rule out AS while an am cortisol >350-500nmol/L is needed to definitively rule out AS. Therefore in children at greater risk, empiric GC therapy for 1 year or a LDST to definitively rule out AS might be considered.

Algorithm 4: Testing procedure for symptomatic children on GC with possible AS

Appendix 2: Sample Wallet Cards

Example 1 – Sample Wallet Card (hydrocortisone).

SAMPLE WALLET CARD – PROVEN OR POSSIBLE AS				
has/is at risk of adrenal				
suppression secondary to GC use for				
They require hydrocortisone for:				
□ Daily replacement and stress dosing				
□ Stress dosing only				
☐ Stress dosing for severe illness/severe injury or surgery only				
Daily hydrocortisone dose (if applicable):				
				
BSA:m² Date:				
All children with confirmed or suspected adrenal suppression must receive extra glucocorticoids in times of physiologic stress.				
See reverse for stress dosing guidelines.				

STRESS DOSING	
PARENTS AND PHYSICIANS	
Moderate Illness including Fever >38.5, severe head cold, vomiting, injury, lethargy	30 mg/m²/day hydrocortisone equivalent, divided TID
G, 7 7, G	This dose is equal tomg of hydrocortisone 3 times daily
PARENTS	
Severe illness or injury or unwell and unable to tolerate oral medications	If you have injectable hydrocortisone at home, givemg (ml) immediately Go to emergency department Consider calling EMS if severe illness or injury
PHYSICIANS	
Severe Illness, Adrenal crisis or severe injury	Hydrocortisone 100 mg/m² (max 100mg) IV/IM Call Endocrinologist on call
Unable to tolerate orally	Hydrocortisone 25 mg/m2/dose q6 h IV or q 8h IM (if requiring ongoing parenteral administration after 24 hours, consult endocrinology)
Surgery	Hydrocortisone 50-100 mg/m ² IV with induction (max 100 mg). Call Endocrinologist on call.

Appendix 2 (continued)

Example 2 – Sample Wallet Card (Prednisone on active therapy)

SAMPLE WALLET CARD – ON ACTIVE THERAPY				
is currently receiving Prednisone therapy for				
He/she is at risk of adrenal suppression related to glucocorticoid therapy				
BSA:m² Date:				
All children with confirmed or suspected adrenal suppression must receive extra glucocorticoids in times of physiologic stress.				
See reverse for stress dosing guidelines.				

STRESS DOSING				
PARENTS AND PHYSICIANS				
Moderate Illness including Fever >38.5, severe head cold, vomiting, injury, lethargy	1)If your child is still above a prednisone dose ofmg (7.5mg/m²/day) divide this dose into two doses one given in the morning and one in the evening. 2) If child is below this dose, increase prednisone tomg (7.5mg/m²/day) given twice a day.			
PARENTS				
Severe illness or injury or unwell and unable to tolerate oral medications	If you have injectable hydrocortisone at home, givemg (ml) immediately Go to emergency department Consider calling EMS if severe illness or injury			
PHYSICIANS				
Severe Illness, Adrenal crisis or severe injury	Hydrocortisone 100mg/m² (max 100mg) IV/IM Call Endocrinologist on call.			
Unable to tolerate orally	Hydrocortisone 25mg/m²/dose q6 h IV or 8h IM (if requiring ongoing parenteral administration after 24 hours, consult endocrinology)			
Surgery	Hydrocortisone 50-100mg/m2 IV with induction (max 100 mg). Call Endocrinologist on call.			

References:

- Todd GR, Acerini CL, Ross-Russell R, Zahra S, Warner JT, McCance D. Survey of adrenal crisis
 associated with inhaled corticosteroids in the United Kingdom. Arch Dis Child 2002;87:457-61.
- 2. Kapadia CR, Nebesio TD, Myers SE, et al. Endocrine Effects of Inhaled Corticosteroids in Children.

 JAMA Pediatr 2016;170:163-70.
- 3. Dinsen S, Baslund B, Klose M, et al. Why glucocorticoid withdrawal may sometimes be as dangerous as the treatment itself. Eur J Intern Med 2013;24:714-20.
- 4. Shulman DI, Palmert MR, Kemp SF. Adrenal insufficiency: still a cause of morbidity and death in childhood. Pediatrics 2007;119:e484-94.
- 5. Goldbloom EB, Mokashi A, Cummings EA, et al. Symptomatic adrenal suppression among children in Canada. Arch Dis Child 2017;102:338-9.
- Wildi-Runge S, Deladoey J, Belanger C, et al. A search for variables predicting cortisol response to low-dose corticotropin stimulation following supraphysiological doses of glucocorticoids. J Pediatr 2013;163:484-8.
- 7. Rensen N, Gemke RJ, van Dalen EC, Rotteveel J, Kaspers GJ. Hypothalamic-pituitary-adrenal (HPA) axis suppression after treatment with glucocorticoid therapy for childhood acute lymphoblastic leukaemia. Cochrane Database Syst Rev 2017;11:CD008727.
- 8. Smith RW, Downey K, Gordon M, et al. Prevalence of hypothalamic-pituitary-adrenal axis suppression in children treated for asthma with inhaled corticosteroid. Paediatr Child Health 2012;17:e34-9.

- Ahmet A, Brienza V, Tran A, et al. Frequency and Duration of Adrenal Suppression Following Glucocorticoid Therapy in Children With Rheumatic Diseases. Arthritis Care Res (Hoboken) 2017;69:1224-30.
- Ahmet A, Kim H, Spier S. Adrenal suppression: A practical guide to the screening and management of this under-recognized complication of inhaled corticosteroid therapy. Allergy Asthma Clin Immunol 2011;7:13.
- 11. Einaudi S, Bertorello N, Masera N, et al. Adrenal axis function after high-dose steroid therapy for childhood acute lymphoblastic leukemia. Pediatr Blood Cancer 2008;50:537-41.
- Goldbloom E, Ahmet A, Abish S, et al. Adrenal Suppression in the Pediatric Population in Canada.
 2012 Results Canadian Pediatric Surveillance Program: Canadian Pediatric Surveillance Program;
 2012:18-20.
- Zora JA, Zimmerman D, Carey TL, O'Connell EJ, Yunginger JW. Hypothalamic-pituitary-adrenal axis suppression after short-term, high-dose glucocorticoid therapy in children with asthma. J Allergy Clin Immunol 1986;77:9-13.
- 14. Henzen C, Suter A, Lerch E, Urbinelli R, Schorno XH, Briner VA. Suppression and recovery of adrenal response after short-term, high-dose glucocorticoid treatment. Lancet 2000;355:542-5.
- 15. Rix M, Birkebaek NH, Rosthoj S, Clausen N. Clinical impact of corticosteroid-induced adrenal suppression during treatment for acute lymphoblastic leukemia in children: a prospective observational study using the low-dose adrenocorticotropin test. J Pediatr 2005;147:645-50.
- 16. Hawcutt DB, Jorgensen AL, Wallin N, et al. Adrenal responses to a low-dose short synacthen test in children with asthma. Clin Endocrinol 2015;82:648-56.
- 17. Adam HM. Fever and host responses. Pediatr Rev 1996;17:330-1.
- 18. Richter B, Neises G, Clar C. Glucocorticoid withdrawal schemes in chronic medical disorders. A systematic review. Endocrinol Metabolism Clin North Am 2002;31:751-78.

- 19. Dixon RB, Christy NP. On the various forms of corticosteroid withdrawal syndrome. Am J Med 1980;68:224-30.
- 20. Lougheed MD, Lemiere C, Ducharme FM, et al. Canadian Thoracic Society 2012 guideline update: diagnosis and management of asthma in preschoolers, children and adults. Can Respir J 2012;19:127-64.
- 21. Donaldson MD, Morrison C, Lees C, et al. Fatal and near-fatal encephalopathy with hyponatraemia in two siblings with fluticasone-induced adrenal suppression. Acta Paediatr 2007;96:769-72.
- 22. Schwartz RH, Neacsu O, Ascher DP, Alpan O. Moderate dose inhaled corticosteroid-induced symptomatic adrenal suppression: case report and review of the literature. Clin Pediatr 2012;51:1184-90.
- 23. Heller MK, Laks J, Kovesi TA, Ahmet A. Reversal of adrenal suppression with ciclesonide. J Asthma 2010;47:337-9.
- 24. Zollner EW. Hypothalamic-pituitary-adrenal axis suppression in asthmatic children on inhaled corticosteroids (Part 2)--the risk as determined by gold standard adrenal function tests: a systematic review. Pediatr Allergy Immunol 2007;18:469-74.
- 25. Patel L, Wales JK, Kibirige MS, Massarano AA, Couriel JM, Clayton PE. Symptomatic adrenal insufficiency during inhaled corticosteroid treatment. Arch Dis Child 2001;85:330-4.
- 26. Lipworth BJ, Kaliner MA, LaForce CF, et al. Effect of ciclesonide and fluticasone on hypothalamic-pituitary-adrenal axis function in adults with mild-to-moderate persistent asthma. Ann Allergy Asthma Immunol 2005;94:465-72.
- 27. Ducharme FM, Dell SD, Radhakrishnan D, et al. Diagnosis and management of asthma in preschoolers: A Canadian Thoracic Society and Canadian Paediatric Society position paper.
 Paediatr Child Health 2015;20:353-71.

- 28. Guilbert TW, Morgan WJ, Zeiger RS, et al. Long-term inhaled corticosteroids in preschool children at high risk for asthma. N Engl J Med 2006;354:1985-97.
- 29. Cavkaytar O, Vuralli D, Arik Yilmaz E, et al. Evidence of hypothalamic-pituitary-adrenal axis suppression during moderate-to-high-dose inhaled corticosteroid use. Eur J Pediatr 2015;174:1421-31.
- 30. Lipworth BJ. Systemic adverse effects of inhaled corticosteroid therapy: A systematic review and meta-analysis. Arch Intern Med 1999;159:941-55.
- 31. Bernstein DI, Allen DB. Evaluation of tests of hypothalamic-pituitary-adrenal axis function used to measure effects of inhaled corticosteroids. Ann Allergy Asthma Immunol 2007;98:118-27.
- 32. Patel D, Ratner P, Clements D, Wu W, Faris M, Philpot E. Lack of effect on adult and adolescent hypothalamic-pituitary-adrenal axis function with use of fluticasone furoate nasal spray. Ann Allergy Asthma Immunol 2008;100:490-6.
- 33. Skoner DP, Berger WE, Gawchik SM, Akbary A, Qiu C. Intranasal triamcinolone and growth velocity. Pediatrics 2015;135:e348-56.
- 34. Zollner EW, Lombard C, Galal U, Hough S, Irusen E, Weinberg E. Hypothalamic-pituitary-adrenal axis suppression in asthmatic children on inhaled and nasal corticosteroids--more common than expected? J Pediatr Endocrinol Metab 2011;24:529-34.
- 35. Bulus AD, Andiran N, Kocak M. Cushing's syndrome: hidden risk in usage of topical corticosteroids. J Pediatr Endocrinol Metab 2014;27:977-81.
- 36. Chiang MY, Sarkar M, Koppens JM, Milles J, Shah P. Exogenous Cushing's syndrome and topical ocular steroids. Eye (Lond) 2006;20:725-7.
- 37. Duclos M, Guinot M, Colsy M, et al. High risk of adrenal insufficiency after a single articular steroid injection in athletes. Med Sci Sports Exerc 2007;39:1036-43.

- 38. Johnston PC, Lansang MC, Chatterjee S, Kennedy L. Intra-articular glucocorticoid injections and their effect on hypothalamic-pituitary-adrenal (HPA)-axis function. Endocrine 2015;48:410-6.
- 39. Ahmet A, Benchimol EI, Goldbloom EB, Barkey JL. Adrenal suppression in children treated with swallowed fluticasone and oral viscous budesonide for eosinophilic esophagitis. Allergy Asthma Clin Immunol 2016;12:49: eCollection 2016.
- 40. Cohen SA, Aloi M, Arumugam R, et al. Enteric-coated budesonide for the induction and maintenance of remission of Crohn's disease in children. Curr Med Res Opin 2017;33:1261-8.
- 41. Foisy MM, Yakiwchuk EM, Chiu I, Singh AE. Adrenal suppression and Cushing's syndrome secondary to an interaction between ritonavir and fluticasone: a review of the literature. HIV medicine 2008;9:389-96.
- 42. Bornstein SR. Predisposing factors for adrenal insufficiency. N Engl J Med 2009;360:2328-39.
- 43. Gilchrist FJ, Cox KJ, Rowe R, et al. Itraconazole and inhaled fluticasone causing hypothalamic-pituitary-adrenal axis suppression in adults with cystic fibrosis. J Cyst Fibros 2013;12:399-402.
- 44. Maguire AM, Biesheuvel CJ, Ambler GR, Moore B, McLean M, Cowell CT. Evaluation of adrenal function using the human corticotrophin-releasing hormone test, low dose Synacthen test and 9am cortisol level in children and adolescents with central adrenal insufficiency. Clin Endocrinol 2008;68:683-91.
- 45. Le Roux CW, Meeran K, Alaghband-Zadeh J. Is a 0900-h serum cortisol useful prior to a short synacthen test in outpatient assessment? Ann Clin Biochem 2002;39:148-50.
- 46. Kazlauskaite R, Maghnie M. Pitfalls in the diagnosis of central adrenal insufficiency in children.

 Endocr Dev 2010;17:96-107.
- 47. Kazlauskaite R, Evans AT, Villabona CV, et al. Corticotropin tests for hypothalamic-pituitary-adrenal insufficiency: a metaanalysis. J Clin Endocrinol Metab 2008;93:4245-53.

- 48. Woods CP, Argese N, Chapman M, et al. Adrenal suppression in patients taking inhaled glucocorticoids is highly prevalent and management can be guided by morning cortisol. Eur J Endocrinol 2015;173:633-42.
- 49. Bornstein SR, Allolio B, Arlt W, et al. Diagnosis and Treatment of Primary Adrenal Insufficiency:

 An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 2016;101:364-89.
- 50. Bancos I, Hahner S, Tomlinson J, Arlt W. Diagnosis and management of adrenal insufficiency.

 Lancet Diabetes Endocrinol 2015;3:216-26.
- 51. Charmandari E, Nicolaides NC, Chrousos GP. Adrenal insufficiency. Lancet 2014;383:2152-67.
- 52. Salem M, Tainsh RE, Jr., Bromberg J, Loriaux DL, Chernow B. Perioperative glucocorticoid coverage. A reassessment 42 years after emergence of a problem. Ann Surg 1994;219:416-25.
- 53. Leblicq C, Rottembourg D, Deladoey J, Van Vliet G, Deal C. Are guidelines for glucocorticoid coverage in adrenal insufficiency currently followed? J Pediatr 2011;158:492-8 e1.
- 54. Hahner S, Spinnler C, Fassnacht M, et al. High incidence of adrenal crisis in educated patients with chronic adrenal insufficiency: a prospective study. J Clin Endocrinol Metab 2015;100:407-16.
- Weise M, Drinkard B, Mehlinger SL, et al. Stress dose of hydrocortisone is not beneficial in patients with classic congenital adrenal hyperplasia undergoing short-term, high-intensity exercise. J Clin Endocrinol Metab 2004;89:3679-84.
- 56. Simunkova K, Jovanovic N, Rostrup E, et al. Effect of a pre-exercise hydrocortisone dose on short-term physical performance in female patients with primary adrenal failure. Eur J Endocrinol 2016;174:97-105.
- 57. Borcherding SM, Baciewicz AM, Self TH. Update on rifampin drug interactions. II. Arch Intern Med 1992;152:711-6.
- 58. Lexicomp. Lexicomp Online. Wolters Kluwer; 2016.

- 59. Ninan TK, Reid IW, Carter PE, Smail PJ, Russell G. Effects of high doses of inhaled corticosteroids on adrenal function in children with severe persistent asthma. Thorax 1993;48:599-602.
- 60. Lotvall J, Bleecker ER, Busse WW, et al. Efficacy and safety of fluticasone furoate 100 mug once-daily in patients with persistent asthma: a 24-week placebo and active-controlled randomised trial. Respir Med 2014;108:41-9.
- 61. Fardon TC, Lee DK, Haggart K, McFarlane LC, Lipworth BJ. Adrenal suppression with dry powder formulations of fluticasone propionate and mometasone furoate. Am J Respir Crit Care Med 2004;170:960-6.
- 62. Perry RJ, Schwarz W, Stosky K, et al. Zenhale-Inhaled Corticosteroid Therapy: Useful Second-Line
 Therapy for Asthma in Children but Be Wary of Adrenal Suppression. Can J Diabetes
 2014;38:S2eS24.
- 63. Wade M, Baid S, Calis K, Raff H, Sinaii N, Nieman L. Technical details influence the diagnostic accuracy of the 1 microg ACTH stimulation test. Eur J Endocrinol 2010;162:109-13.
- 64. Cartaya J, Misra M. The low-dose ACTH stimulation test: is 30 minutes long enough? Eur J Endocrinol 2015;21:508-13.
- 65. Hawley JM, Owen LJ, Lockhart SJ, et al. Serum Cortisol: An Up-To-Date Assessment of Routine Assay Performance. Clin Chem 2016;62:1220-9.
- 66. Treatment of adrenal insufficiency in children. UpToDate. Wolters Kluwer, 2016. (Accessed 13 October, 2016, at https://www.uptodate.com/index.html#!/contents/treatment-of-adrenal-insufficiency-in-children?source=search_result&search=glucocorticoid%20potency&selectedTitle=6~7.)
- 67. Punthakee Z, Legault L, Polychronakos C. Prednisolone in the treatment of adrenal insufficiency: a re-evaluation of relative potency. J Pediatr 2003;143:402-5.

68. Chrousos, Pavlaki AN, Magiakou MA. Glucocorticoid Therapy and Adrenal Suppression [Updated 2011 Jan 11]. In: De Groot LJ, Chrousos G, Dungan K, et al., eds. South Dartmouth (MA);

Available from: https://www.ncbi.nlm.nih.gov/books/NBK279156/: Endotext [Internet]; 2011.